NICKERSON ENGINEERING

Structural Calculations for:

Yang Residence

Project Address:
7431 E Mercer Way
Mercer Island, WA 98040

Structural Engineering by:
Nickerson Engineering
2221 Everett Ave, \#202
Everett, WA 98201

Design per:
2015 International Building Code

DESIGN CRITERIA
CODE: 2015 IB
SNOW LOAD: 25 PSF
LIVE LOAD: 40 PSF (60 PSF ODECKS)
ROOF DR : 15 PSF
DECK DR : 15 PSF
FLOOR DI: 12 PSF
ALLOWABLE SOIL BEARING: 2000 PSF

$$
\begin{aligned}
& 11 /{ }^{\prime \prime} \text { GYP CRETE : } 13 \text { PSF } \\
& 1 \theta \text { upPER FLONE) }
\end{aligned}
$$

(\mathcal{O} open F Loos)
$\left(\begin{array}{l}\text { PER GEOTECH REPORT } \\ \text { BY CASCADE GEOTELHNW } \\ \text { DATED } 12 / 5 / 18\end{array}\right)$

ROOF FRAMING

BI

DKL: UNBAR SPAN WORST CASE

$$
\begin{array}{ll}
w=75(20 / 2+1.16)=837^{P L F}\left(670^{P L F} \text { LL }\right) \\
f_{b}=1133 \mathrm{pSi} & 51 / 4 \times 16 \mathrm{PSL} \\
f_{1}=132 \text { PSi } & R_{1}=4.26^{\mathrm{K}}\left(3.31^{\mathrm{KLL}}\right) \\
\Delta T I L=L /<-1000 & R_{2}=13.44^{\mathrm{K}}\left(10.42^{\mathrm{K} L L}\right) \\
& \left(R_{1}=-0.262^{\mathrm{K}}\right. \text { VNBAL.)} \\
\text { SPAN })
\end{array}
$$

$B 2 D+L$:

$$
\begin{aligned}
& l=9^{\prime} \\
& w=75(20 / 2)=750^{\text {PLF }}\left(600 \mathrm{PLF}_{\mathrm{LL}}\right) \\
& f_{3}=1686 \mathrm{pSi} \quad 31 / 2 \times 11^{7 / 8} \mathrm{LSL} \\
& f_{1}=124 \mathrm{pSi} \quad R=3.424 \mathrm{~K} \\
& \Delta_{\pi}=L / 681 \quad\left(2.7^{\mathrm{K} L L}\right)
\end{aligned}
$$

$B 3$ DoL

$$
\begin{aligned}
& l=4.5^{\prime} \\
& w=837 \mathrm{PLF}\left(670^{\mathrm{PLF}} \mathrm{LL}\right) \\
& f_{b}=835 \text { poi }<1300 \\
& f=112 \text { Psi } \quad 4 \times 8 \\
& \Delta_{\pi}=L / 71000 \quad R=1.90^{\mathrm{k}} \quad \\
& \left(1.51^{\mathrm{k}} \mathrm{LL}\right)
\end{aligned}
$$

BA DIV

$$
\begin{aligned}
& l=9.5^{\prime} \\
& \omega=75(19 / 2)=713^{\text {PF }}(570 \mathrm{PLF} \text { LL }) \\
& f_{b}=1173 \mathrm{psi} \quad 31 / 2 \times 11^{7} / 8 \mathrm{LsL} \\
& f_{v}=97 \mathrm{psi} \\
& \Delta T_{L}=L / 682 \\
& R=3.44^{\mathrm{K}} \\
& \left(2.71^{K} L L\right)
\end{aligned}
$$

\qquad

DESIGN CK sheer G1

UPPER FLOOR FRAMING
B5 D+L:

$$
l=20,06^{\prime}
$$

$$
\omega=15(3)+102+65(1.33)=233^{\text {PVF }}
$$

$$
f_{3}=1238 \mathrm{psi}
$$

$$
f_{v}=61 \mathrm{psi}
$$

$$
51 / 4 \times 11^{1 / 8} \text { ps }
$$

$$
\Delta_{16}=L / 275
$$

$$
k=2.54^{\mathrm{K}}
$$

$$
\left(0.534^{\mathrm{K}} \mathrm{LL}\right)
$$

$D+s:$

B6

DX:

$$
\begin{aligned}
& W_{1}=25(20 / 2)=250 \text { PLF DL } \\
& W_{2}=65(20 / 2)+102+15(21 / 2+2) \\
& w_{2}=940 \mathrm{PLF}(400 \text { PLF LL }) \\
& P=1.47 \mathrm{kDL} \\
& f_{3}=473 \mathrm{PSi} \quad 5 / 4 \times 117 / 8 \mathrm{PSL} \\
& f_{1}=82 \mathrm{PSi} \\
& \Delta_{1}=L /-1000 \\
& R_{1}=-0.3_{2}=5.034^{\mathrm{k}}\left(0.9 \mathrm{R}^{\mathrm{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.w=40(3)+102+15(1.33)=\begin{array}{l}
242^{p / F} \\
\left(75^{0 L L}\right)
\end{array}\right)
\end{array} \\
& f_{b}=1282 \mathrm{psi} \\
& f=63 \mathrm{psi} \\
& 51 / 4 \times 11 / 8 \text { PSL } \\
& \Delta_{\pi}=L / 273 \\
& R=2.63^{\mathrm{k}} \\
& \text { (0.753 K SV) }
\end{aligned}
$$

B6 cont...

$$
\begin{aligned}
& \frac{D+0.75(s+L)}{w_{1}=25(20 / 2)=250 \text { PLF DL }} \\
& \left.w_{2}=55(20 / 2)+102 \times 33.75 / 12.5\right) \\
& w_{2}=1074 \mathrm{PLF}(534 \mathrm{PLFLL}) \\
& P=1.358 \mathrm{~K}\left(0.563^{\mathrm{K} L L}\right) \\
& f_{0}=479 \mathrm{pSi} \quad 51 / 4 \times 11 / 8 \mathrm{PSL} \\
& f_{1}=85 \mathrm{psi} \quad R_{1}=-0.31^{\mathrm{K}} \\
& \Delta_{T}=L /-1000 \quad R_{2}=5.2 \mathrm{~K}
\end{aligned}
$$

B 7
$D+0.75(s+c):$

$$
\begin{aligned}
& l=6^{\prime} \\
& w=33.75(12.5)+102+55(21 / 2) \\
& w=1101.4 \text { PLF }(5494 P L \mathrm{FL}) \\
& f_{b}=1418 \mathrm{PSI} \quad 31 / 2 \times 9 \mathrm{GLB} \\
& f_{1}=177 \mathrm{PSi} \quad R=3.342 \mathrm{~K} \\
& \Delta_{T V}=L / 71000 \quad\left(1.65^{\mathrm{k}} \mathrm{LV}\right)
\end{aligned}
$$

UPPER FLR FRMg CONT...
B8

D +2 -GOVERNS

$$
\begin{aligned}
& b=10^{3 / 8} \\
& d=72 b^{4}
\end{aligned}
$$

$R_{2}=10.5^{2} \|_{0} 0^{5}$
ALT Option w 8×58 $b=8 \frac{1}{4}{ }^{\circ}$ $d=83 / a^{\prime \prime}$暚

$$
R_{1}=14.73^{k}\left(9.614^{k} L V\right)
$$

$$
\begin{aligned}
& w_{1}=65(32.5 / 2)=1056.3 \quad\left(650^{\text {PLF }}\right. \text { WV) } \\
& w_{2}=75(32.5 / 2)+10(10.16+4)+65(32.5 / 2) \\
& w_{2}=2417 \text { PLF }(1625 \text { PVF LL) } \\
& w_{3}=65(20 / 2)=650 \text { PLF }(400 \text { PVF LV }) \\
& P_{1}=[15(7 / 2)+10(10.16+4)](12.5 / 2) \\
& \\
& +75(20 / 2)(7 / 2)=3.84^{\mathrm{K}}\left(2.1^{\mathrm{K}}\right)
\end{aligned}
$$

$$
P_{2}=75(32.5 / 2)(4.5 / 2)=2.74^{k}\left(2.194^{k}\right)
$$

$$
W 10 \times 26 \quad b=8^{\circ} \quad d=10 \%
$$

$$
R_{2}=10.5^{k}\left(6.543^{k} v v\right)
$$

SEE B8 (D+V) OVTPUT
ON PG 64
$D+w$

$$
\begin{aligned}
& W_{1}=406.3 \text { PLF DV } \\
& W_{2}=792 \text { PLFDL } \\
& W_{3}=250 \text { PLF DL } \\
& P_{1}=1.74^{k} \text { DL }+2.43^{L^{(w)}=4.17^{k}} \\
& P_{2}=0.546^{k} \text { DL } \\
& W 10 \times 26 \quad R_{1}=6.4^{k}\left(1.12^{k} w\right) \\
& R_{2}=5.25^{k}\left(1.3^{k w}\right) \\
& 4 \text { SEE B8 (D+w) OVTPVTION G5 }
\end{aligned}
$$

PROJECT

B8 CONT...
1.15D+ $\Omega_{0} E$ OVERSTRENGTH- f_{5}
$W_{1}=467 \mathrm{PLF}$
$\omega_{2}=911 \mathrm{PVF}$
$W_{3}=288 \mathrm{PVF}$
$P_{1}=2.0^{k}+2.5(2.773)=8.93^{k}$
$P_{2}=0.63^{\mathrm{k}}$

$$
W 10 \times 26
$$

- SEE B8 (OVERSTRENGTH) OUTPUT ON PG G6

B9 D+L

$$
\begin{aligned}
& l=9^{\prime} \\
& w=65(20 / 2)=650^{P L F}\left(400^{\mathrm{PLF}}\right) \\
& f_{3}=659 \mathrm{psi} \quad 5^{\prime} / 4 \times 117 / 8 \mathrm{PSL} \\
& f_{1}=72.5 \mathrm{pSi} \quad R=3.013^{\mathrm{K}} \\
& \Delta \pi=L / 71000 \quad(1.8 \mathrm{~K} \mathrm{LV})
\end{aligned}
$$

$B 10$

$$
\left.\begin{array}{l}
\frac{D+L:}{w_{1}=75(3 / 2)+40=153 \mathrm{PLF}\left(90^{\mathrm{PLF}} \mathrm{LV}\right)} \\
w_{2}=40 \mathrm{PLF} \mathrm{DL} \\
P=75(3 / 2)(8 / 2)=0.45^{\mathrm{k}}(0.36 \mathrm{k}
\end{array}\right)
$$

BeamChek v2018 licensed to: Nickerson Engineering, LLC Reg \# 6181-66005

Yang Residence			Upper Floor Framing Plan			
B8 (D+L)			Date: 6/28/19			
Selection	W 10x 2650 ksi Wide Flange Steel			Lateral Support: Lc = 5.2 ft max .		
Conditions	Actual Size is $5-3 / 4 \times 10-3 / 8 \mathrm{in}$.					(1.0) DL Defl $=0.17$ in Recom Camber= 0.25 in
Data	Beam Span Beam Wt per ft Bm Wt Included Max Moment TL Max Defl LL Max Defl	$\begin{aligned} & 14.0 \mathrm{ft} \\ & 26.0 \text { \# } \\ & 364 \text { \# } \\ & 54939 \text { '\# } \\ & \mathrm{L} / 240 \\ & \mathrm{~L} / 480 \end{aligned}$	Reaction 1 LL Reaction 1 TL Maximum V Max V (Reduced) TL Actual Defl LL Actual Defl	$\begin{array}{r} 9614 \text { \# } \\ 14726 \text { \# } \\ 14726 \text { \# } \\ \text { N/A } \\ \text { L / } 365 \\ \text { L / } 569 \end{array}$	Reaction 2 LL Reaction 2 TL	$\begin{array}{r} 6543 \text { \# } \\ 10489 \text { \# } \end{array}$
Attributes	Section (in^{3})	Shear (in ${ }^{\text {2 }}$)	TL Defl (in)	LL Defl		
Actual	27.90	2.69	0.46	0.30		
Critical	19.98	0.74	0.70	0.35		
Status	OK	OK	OK	OK		
Ratio	72\%	27\%	66\%	84\%		
		Fb (psi)	Fv (psi)	E (psi x mil)		
Values	Ref. Value Fy Adjusted Values	$\begin{aligned} & 50000 \\ & 33000 \end{aligned}$	$\begin{aligned} & 50000 \\ & 20000 \end{aligned}$	$\begin{array}{r} 29.0 \\ 29.0 \\ \hline \end{array}$		
Adjustments	YP Factor, Lc At Point Loads: $B=0.9$	0.66 rovide these $C=0.9$	0.40 minimum bearing le	ngths in inc	ches or provide web	ners.
Loads						
Point LL	Point TL	Distance	Par Unif LL	Par Unif T	TL Start	End
2100	$B=3840$	7.5	650	H = 1056	0	3.0
2194	$C=2740$	3.0	1625	$\mathrm{I}=2417$	3.0	7.5
			400	$J=650$	7.5	14.0

Uniform and partial uniform loads are lbs per lineal ft.

BeamChek v2018 licensed to: Nickerson Engineering, LLC Reg \# 6181-66005

Uniform and partial uniform loads are lbs per lineal ft.

UPPER FUR FRMG CONT...

BH

$D+L: W_{1}=22.5$ DLF $D L$
314

$D+C$

$$
\begin{aligned}
\overline{w_{1}} & =75(20 / 2)+10(4+10.2)+65(20 / 2) \\
& +75(3 / 2)=1655^{P L F}\left(1090^{P L F} L 2\right) \\
w_{2} & =65(20 / 2)+75(3 / 2)=763^{\text {PVF }}\left(490^{P L F} \mathrm{LL}\right)
\end{aligned}
$$

B12 D+L:

B13

D+L:

$$
\begin{array}{ll}
f_{1}=56 p s i & R_{1}=1.65 \mathrm{k}(0.921 \mathrm{k}) \\
\Delta_{\text {IV }}=4 / 952 & R_{2}=3.82 \mathrm{k}(1.98 \mathrm{kv})
\end{array}
$$

$$
\Delta_{\text {PROECT }}=4 / 952 \quad R_{2}=3.82 \mathrm{k}(1.98 \mathrm{kV})
$$ date $6 / 27 / 19$ PRou. No. $19-065$

Yang RES, DESION CKS shest G7

$$
\begin{aligned}
& W_{2}=75(3 / 2)=113 \operatorname{PUF}(9 \cup P V F W) \\
& P=2.14^{k}\left(1.2^{k} \mathrm{~L}\right) \\
& f_{2}=1399 \mathrm{psi} \\
& f=82 \mathrm{psi} \\
& 51 / 2 \times 9 G L B \\
& \Delta_{T V}=L /-L_{1000} \\
& R_{1}=-1.6^{k} \\
& R_{2}=4.27^{\mathrm{k}}\left(2.423_{w}^{\mathrm{k}}\right)^{\rho}
\end{aligned}
$$

BeamChek v2018 licensed to: Nickerson Engineering, LLC Reg \# 6181-66005

BeamChek v2018 licensed to: Nickerson Engineering, LLC Reg \# 6181-66005						
Yang Residence			Upper Floor Framing Plan			
B14 (D+L)			Date: 6/28/19			
Selection	W 8x 2150 ksi Wide Flange Steel			Lateral Support: Lc = 4.7 ft max .		
Conditions	Actual Size is $5-$ Min Bearing Length	$\begin{gathered} 4 \times 8-1 / 4 \mathrm{in} . \\ R 1=0.8 \mathrm{in} . \end{gathered}$	R2= 0.8 in. (1.0) DL Defl= 0.04 in Recom Camber= 0.06 in			
Data	Beam Span Beam Wt per ft Bm Wt Included Max Moment TL Max Defl LL Max Defl	$\begin{aligned} & \hline 8.0 \mathrm{ft} \\ & 21.0 \text { \# } \\ & 168 \text { \# } \\ & 21056 \text { '\# } \\ & \mathrm{L} / 360 \\ & \mathrm{~L} / 480 \end{aligned}$	Reaction 1 LL Reaction 1 TL Maximum V Max V (Reduced) TL Actual Defl LL Actual Defl	$\begin{array}{r} 5379 \# \\ 8345 \# \\ 8345 \# \\ \text { N/A } \\ \mathrm{L} / 923 \\ \mathrm{~L} />1000 \end{array}$	Reaction 2 LL Reaction 2 TL	$\begin{aligned} & 4847 \text { \# } \\ & 7699 \text { \# } \end{aligned}$
Attributes	Section (in^{3})	Shear (in^{2})	TL Defl (in)	LL Defl		
Actual	18.20	2.07	0.10	0.07		
Critical	7.66	0.42	0.27	0.20		
Status	OK	OK	OK	OK		
Ratio	42\%	20\%	39\%	33\%		
		Fb (psi)	Fv (psi)	E (psi x mil)		
Values	Ref. Value Fy Adjusted Values	$\begin{aligned} & 50000 \\ & 33000 \\ & \hline \end{aligned}$	$\begin{aligned} & 50000 \\ & 20000 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.0 \\ 29.0 \\ \hline \end{array}$		
Adjustments	YP Factor, Lc At Point Loads: $B=0.8$	0.66 ovide these $C=0.8$	0.40 minimum bearing le $D=0.8$	ngths in inch $E=0.8$	es or provide web	
Loads						
Point LL	Point TL	Distance	Par Unif LL	Par Unif TL	Start	End
801	$B=1055$	1.0	1090	H = 1655	0	1.0
801	$C=1055$	3.67	490	$\mathrm{I}=763$	1.0	3.67
1224	D $=1612$	5.17	1090	$J=1655$	3.67	5.17
1980	$E=3820$	4.42	490	$\mathrm{K}=763$	5.17	8.0

Uniform and partial uniform loads are lbs per lineal ft.

BeamChek v2018 licensed to: Nickerson Engineering, LLC Reg \# 6181-66005

Uniform and partial uniform loads are lbs per lineal ft.

UPPER FLR FRMG CONT, CN

B14 CONT...

$$
\omega_{1}=650 \mathrm{PLF}
$$

$$
w_{2}=314 \mathrm{PVF}
$$

$$
P_{1}=0.292+2.5(3.74)=9.642^{\mathrm{k}}
$$

$$
P_{2}=0.292^{k}
$$

$$
P_{3}=0.45^{k}
$$

$$
P_{4}=2.12^{\mathrm{K}}
$$

$$
W 8 \times 21 \text { OK }
$$

SEE B14 (OVERSTRENGTH) OUTPUT ON GII

B15 D+V:

$w_{1}=75(4 / 2)+40=190 \mathrm{PLF}\left(120^{\mathrm{PLF}} \mathrm{VL}\right)$
$\omega_{2}=40$ PLF DL

$$
\begin{aligned}
& \left.P=[75 / 3 / 2)+40](\mathrm{k} / 2)=1.0688^{\mathrm{k}} \mathrm{l}, \mathrm{k}\right) \\
& C 12 \times 20.7 \\
& R_{1}=1.754^{\mathrm{K}}\left(1.041^{\mathrm{K}} \mathrm{LC}\right) \\
& \triangle R_{2}=13.35^{k}\left(1.87^{\mathrm{K} L L}\right) \\
& \text { Q } \\
& \text { SEE B15 OUTPVT ON } \\
& P G G 13
\end{aligned}
$$

$D+2:$

$$
\begin{aligned}
& w_{1}=65(19 / 2)+75(3 / 2)=730 \text { PuF } \\
& \begin{array}{l}
730 \text { P4F } \\
(470) \\
=1
\end{array} \\
& w_{2}=75(3 / 2)=113 \mathrm{PLF}(90 \text { PLE } \mathrm{LV}) \\
& P=3,34^{k}\left(1.87^{k} 4\right) \\
& w 8 \times 21 \quad b=5 \frac{1}{4}{ }^{\prime \prime} \\
& R_{1}=2.25^{k}\left(1.4 q^{k} d=8\right)^{d} /^{\prime \prime} \\
& R_{2}=8.693^{k}\left(5.164^{k} v\right)
\end{aligned}
$$

* SEE BIb ouTPUT ON G12

B17 D+L:

$$
\begin{aligned}
& l=4.67^{\circ} \\
& \left.\omega=65(33 / 2)=1073^{P L F} \text { (} 660_{\mathrm{LL}}^{\mathrm{PLF}}\right) \\
& f_{b}=826 \mathrm{psi} \quad(2) 2 \times 10 \\
& f_{v}=136 \text { psi } \quad R=2.521 \mathrm{~K} \\
& \Delta_{1 L}=L / 71000 \quad\left(1.541^{K}\right)
\end{aligned}
$$

date b/27/19 PRou. no. $19-065$ DESIIN CKS SHEET-G10

BeamChek v2018 licensed to: Nickerson Engineering, LLC Reg \# 6181-66005						
Yang Residence			Upper Floor Framing Plan			
B16			Date: 6/28/19			
Selection	W 8x 2150 ksi Wide Flange Steel			Lateral Support: Lc = 4.7 ft max.		
Conditions	Actual Size is $5-1 / 4 \times 8-1 / 4 \mathrm{in}$., Overhang					
Data	Min Bearing Length Beam Span Beam Wt per ft Bm Wt Included Max Moment TL Max Defl LL Max Defl	$\begin{array}{r} 9.5 \mathrm{ft} \\ 21.0 \text { \# } \\ 273 \text { \# } \\ 12511 \text { ' } \\ \mathrm{L} / 360 \\ \mathrm{~L} / 480 \end{array}$	Reaction 1 LL Reaction 1 TL Maximum V Max V (Reduced) TL Actual Defl LLActual Defl	$\begin{array}{r} 1486 \# \\ 2250 \# \\ 4884 \# \\ \text { N/A } \\ \mathrm{L} />1000 \\ \mathrm{~L} / \mathrm{l}>1000 \end{array}$	Reaction 2 LL Reaction 2 TL Overhang Length Total Beam Length OH TL Actual Defl OH LL Actual Defl	$5164 \#$ $8693 \#$ 3.5 ft 13.0 ft $\mathrm{L} />1000$ $\mathrm{~L} />1000$
Attributes	Section (in^{3})	Shear (in^{2})	TL Defl (in)	LL Defl	OH TL Defl	OH LL Defl
Actual	18.20	2.07	0.01	<0.01	0.07	0.04
Critical	4.53	0.24	0.32	0.24	0.23	0.18
Status	OK	OK	OK	OK	OK	OK
Ratio	25\%	12\%	2\%	3\%	31\%	20\%
		Fb (psi)	Fv (psi)	E (psi x mil)		
Values	Ref. Value Fy Adjusted Values	$\begin{aligned} & 50000 \\ & 33000 \\ & \hline \end{aligned}$	$\begin{aligned} & 50000 \\ & 20000 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.0 \\ 29.0 \\ \hline \end{array}$		
Adjustments	YP Factor, Lc At Point Loads:	0.66 Provide these	0.40 minimum bearing le	engths in inc	ches or provide web stif $F=0.8$	stiffeners.
Loads		Uniform LL: 47	70 Uniform	m TL: $730=$	= A (Uniform Ld	d on Backspan)
Point LL	Point TL	Distance	Par Unif LL	Par Unif T	L Start	End
1870	$\mathrm{F}=3340$ (OH)) 3.5	90	K = 113 ($\mathrm{OH}) \quad 0$	3.5

Uniform and partial uniform loads are lbs per lineal ft. Overhanging load distances are from R2.

Uniform and partial uniform loads are lbs per lineal ft. Overhanging load distances are from R2.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$981 @ 21 / 2^{\prime \prime}$	$1265\left(1.75^{\prime \prime}\right)$	Passed (78\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$967 @ 31 / 2^{\prime \prime}$	2050	Passed (47\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$4753 @ 9^{\prime} 111 / 2^{\prime \prime}$	9500	Passed (50\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.419 @ 9^{\prime} 111 / 2^{\prime \prime}$	0.488	Passed (L/558)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.524 @ 9^{\prime} 111 / 2^{\prime \prime}$	0.975	Passed (L/446)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	50	45	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 8' 1" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 19' 10 " o/c unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{\text {rm }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: $1 / 2^{\text {" Gypsum ceiling. }}$

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	3.50"	$1.75{ }^{\prime \prime}$	$1.75{ }^{\prime \prime}$	199	797	996	$13 / 4$ " Rim Board
2 - Stud wall - HF	5.50"	$3.75{ }^{\prime \prime}$	1.75"	203	810	1013	$13 / 4$ " Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $20^{\prime} 1^{\prime \prime}$	$16^{\prime \prime}$	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by CKS
(8) SUSTAINABLE FORESTRY INITLATIVE

ForteWEB Software Operator	Job Notes
Chris Simpliciano	
Nickerson Engineering, LLC	
(425) 610-4425	
simpliciano@nickersonengineering.com	

Upper Floor, Floor: Joist (19.33' Span)
1 piece(s) 11 7/8" TJ I ® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$865 @ 41 / 2^{\prime \prime}$	$1725(3.50 ")$	Passed (50\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$838 @ 51 / 2^{\prime \prime}$	2050	Passed (41\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$4119 @ 10^{\prime} 11 / 2^{\prime \prime}$	9500	Passed (43\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.280 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.488	Passed (L/837)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
Total Load Defl. (in)	$0.454 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.975	Passed (L/515)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	50	45	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 8' 9" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $20^{\prime} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: $1 / 2^{\text {" Gypsum ceiling. }}$

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	5.50"	$3.75{ }^{\prime \prime}$	$1.75{ }^{\prime \prime}$	338	540	878	$13 / 4$ " Rim Board
2-Stud wall - HF	5.50"	$3.75{ }^{\prime \prime}$	1.75 "	338	540	878	$13 / 4$ " Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $20^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by CKS

ForteWEB Software Operator
J ob Notes

Upper Floor, Floor: Joist (20.16' Span)
1 piece(s) 11 7/8" TJI® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$901 @ 41 / 2^{\prime \prime}$	$1725\left(3.50^{\prime \prime}\right)$	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$874 @ 51 / 2^{\prime \prime}$	2050	Passed (43\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$4479 @ 10^{\prime} 61 / 2^{\prime \prime}$	9500	Passed (47\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.327 @ 10^{\prime} 61 / 2^{\prime \prime}$	0.508	Passed (L/747)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.531 @ 10^{\prime} 61 / 2^{\prime \prime}$	1.017	Passed (L/459)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	47	45	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 8' 4 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 20 ' 10 " o/c unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{\text {rm }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: $1 / 2^{\text {" Gypsum ceiling. }}$

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	5.50"	$3.75{ }^{\prime \prime}$	$1.75{ }^{\prime \prime}$	351	562	913	$13 / 4$ " Rim Board
2-Stud wall - HF	5.50"	$3.75{ }^{\prime \prime}$	1.75 "	351	562	913	$13 / 4$ " Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $21^{\prime} 1^{\prime \prime}$	$16^{\prime \prime}$	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by CKS

ForteWEB Software Operator
J ob Notes

Seismic Design Loads (ASCE 7-10)

for a Wood Framed Structure

OCCUPANCY CAT. II
IMP. FACTOR 1
SITE CLASS D

$$
R=6.5
$$

$h=27.24$

$$
\begin{aligned}
S_{S} & =1.452 \\
S_{1} & =0.553 \\
S_{M S} & =1.452 \\
S_{M 1} & =0.83 \\
S_{D S} & =0.968 \\
S_{D 1} & =0.553333333
\end{aligned}
$$

Table 1.5-1
Table 1.5-2
Table 20.3-1
Table 12.2-1
ft

2010 ASCE 7 Standard (http://geohazards.usgs.gov/designmaps)
2010 ASCE 7 Standard (http://geohazards.usgs.gov/designmaps)
Table 11.4-1
Table 11.4-2

Eqn. 12.8-7
Eqn. 12.8-2
Eqn. 12.8-3
Eqn. 12.8-5

Base Shear, $\mathrm{V}=$	10518 Ibs

Shearwalls	DL (psf)	A (sq.ft.)	$\mathrm{W}(\# ' \mathrm{~s})$	$\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	$\mathrm{W}^{*} \mathrm{~h}_{\mathrm{x}}$	C_{vx}	Lat. Load (lbs)
2nd Flr Shearwalls	25	2300	57500	23.5	1351250	0.727537	$\mathbf{7 6 5 3}$
1st Flr Shearwalls	20	2170	43400	11.66	506044	0.272463	$\mathbf{2 8 6 6}$
		Sum=	100900	Sum $=$	1857294		

Diaphragm Forces (per ASCE 7-10 12.10.1.1)

level	lower limit	upper limit	sum F	sum W	calc'd force	Diaphragm Load (Ibs)
Roof	7792.4	15584.8	7653	57500	7652.6	$\mathbf{7 7 9 2}$
2nd	5881.568	11763.14	10518	100900	4524.3	$\mathbf{5 8 8 2}$

Yang Residence

Wind Design Loads (ASCE 7-10)

Directional Procedure

ALL wind directions

Exposure	C	
V	$=110$	mph
K_{d}	$=0.85$	
I	$=1$	
G	$=0.85$	

	Roof Angle $=$	0	degrees
	Ground to top of roof	27.24	ft
Table 26.6-1	Bottom of roof to top of roof	0	ft
Table 1.5-2	(mean roof height) h=	27.24	ft

Topography from Figure 26.8-1

Terrain $=$	(ridge, hill, escarpment) (UPwind or DOWNwind)	
Site $=$	ft	height of topography
$\mathrm{H}=$	ft	distance from H/2 to crest>0 $\mathrm{L}_{\mathrm{h}}=$
$\mathrm{x}=$	ft	distance from crest to site
$\mathrm{z}=$	ft	Height from bottom of topo. to site
$\mu=$	1.5	
$\mathrm{Y}=$	4	
$\mathrm{~K}_{1}$ value	1.05	
$\mathrm{~K}_{1}=$		
$\mathrm{K}_{2}=$		
$\mathrm{K}_{3}=$		

$\mathrm{K}_{\mathrm{zt}}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{2}=1.00$ Per Mercer Island Wind Map

Pressure Coefficients	
from Figure 27.4-1:	
Bldg Face	C_{p}
Windward Wall	0.8
Leeward Wall	-0.5
Windward Roof	0
Leeward Roof	-0.6

*Note $=C p$ values are conservative
worst case values

Pressures:					
Ht	K_{z}	$0.6^{*} \mathrm{q}_{\mathrm{z}}{ }^{* *}$	$\mathrm{P}_{\text {ww walls }}$	$\mathrm{P}_{\text {lwwalls }}$	$\mathbf{P}_{\text {walls }}$ (psf)
$0-15$	0.85	13.43	9.13	6.58	$\mathbf{1 5 . 7 1}$
$15-20$	0.9	14.22	9.67	6.58	$\mathbf{1 6 . 2 5}$
$20-25$	0.94	14.85	10.10	6.58	$\mathbf{1 6 . 6 8}$
$25-30$	0.98	15.48	10.53	6.58	$\mathbf{1 7 . 1 1}$
$30-40$	1.04	16.43	11.17	6.58	$\mathbf{1 7 . 7 5}$

**NOTE: Wind pressures are ASD

$P_{\text {roof }}(\mathrm{psf})$
7.90

Pressures	Yang Residence		
	EAST TO WEST		Force
$\mathrm{P}_{\text {roof }}=$	7.90	0.00	0
$\mathrm{P}_{30-40}=$	17.75	0.00	0
$\mathrm{P}_{25-30}=$	17.11	84.38	1443.521931
$\mathrm{P}_{20-25}=$	16.68	231.58	3862.220662
$\mathrm{P}_{15-20}=$	16.25	125.49	2038.961038
$\mathrm{P}_{0-15}=$	15.71	0.00	0
		SUM	7344.703631
Pressures		Wind Area	Force
$\mathrm{P}_{\text {roof }}=$	7.90	0.00	0
$\mathrm{P}_{30-40}=$	17.75	0.00	0
$\mathrm{P}_{25-30}=$	17.11	0.00	0
$\mathrm{P}_{20-25}=$	16.68	0.00	0
$\mathrm{P}_{15-20}=$	16.25	103.03	1674.031044
$\mathrm{P}_{0-15}=$	15.71	424.70	6672.407474
		SUM	8346.438519

Shear Wall Lengths
Second Floor Shearwalls

	$\mathrm{h}_{\text {max }}$	wall 1	wall 2	wall 3	wall 4	wall 5	wall 6	wall 7	wall 8	wall 9	wall 10	SUM
grid 1	10.16	5.83	7.08	15.25								28.16
aspect ratio reduc		5.83	7.08	15.25								28.16
grid 2	10.16	12.16										12.16
aspect ratio reduc		12.16										12.16
grid 3	10.16	15.75										15.75
aspect ratio reduc		15.75										15.75
grid 4	10.16	8.33	3.67									12
aspect ratio reduc		8.33	2.651358									10.98135827
grid 5												0
aspect ratio reduc												0
grid 6												0
aspect ratio reduc												0
grid A	10.16	20.75										20.75
aspect ratio reduc		20.75										20.75
grid B	10.16	6.92										6.92
aspect ratio reduc		6.92										6.92
grid C	10.16	4.16	4.75									8.91
aspect ratio reduc		3.406614173	4.441437									7.848051181
grid D	10.16	3.16	3									6.16
aspect ratio reduc		1.965669291	1.771654									3.737322835
grid E												0
aspect ratio reduc												0
grid F												0
aspect ratio reduc												0

Shear Wall Lengths
First Floor Shearwalls
First Floor Shearwalls

	$\mathrm{h}_{\text {max }}$	wall 1	wall 2	wall 3	wall 4	wall 5	wall 6	wall 7	wall 8	wall 9	wall 10	SUM
grid 1	11.16	20.16	2	2								24.16
aspect ratio reduc		20.16	1.142857	1.142857								22.44571429
grid 2	11.16	14.16										14.16
aspect ratio reduc		14.16										14.16
grid 3	11.16	5.5										5.5
aspect ratio reduc		5.421146953										5.421146953
grid 4	11.16	8.42	10.67									19.09
aspect ratio reduc		8.42	10.67									19.09
grid 5												0
aspect ratio reduc												0
grid 6												0
aspect ratio reduc												0
grid A	11.16	15.08	8.42									23.5
aspect ratio reduc		15.08	8.42									23.5
grid B	11.16	20.08										20.08
aspect ratio reduc		20.08										20.08
grid C	11.16	7.16	4.75									11.91
aspect ratio reduc		7.16	4.043459									11.20345878
grid D	11.16	4										4
aspect ratio reduc		2.867383513										2.867383513
grid E												0
aspect ratio reduc												0
grid F												0
aspect ratio reduc												0

FORCE DISTRIBUTION

SECOND FLOOR SHEARWALLS			story shears:				Vs $=7653$		$\frac{\mathrm{Vw}}{\mathrm{Vw}}$	$\begin{array}{r} \hline 7345 \\ \hline 7941 \end{array}$	$\begin{aligned} & \hline \text { east to west } \\ & \hline \text { north to south } \\ & \hline \end{aligned}$	holdown
			$\mathrm{V}_{\text {wind }}(\mathrm{lbs})$	$\sum l_{\text {wall }}(\mathrm{ft})$	$\sum l_{\text {wall }}$ (ft)	v_{us} (plf)	$\mathrm{v}_{\mathrm{u}} \mathrm{w}$ (plf)	SW				
	grid	$\mathrm{V}_{\text {seismic }}$ (lbs)							h (ft)	DL(lbs)	uplift (lbs)	
E to W	1	1701	1632	28.16	28.16	60	58	SW1	10.16	194	419	NONE
	2	3019	2897	12.16	12.16	248	238	SW2	10.16	308	2214	(2)CS16
	3	2126	2040	15.75	15.75	135	130	SW1	10.16	110	1262	(1)CS16
	4	808	775	10.98136	12	74	65	SW1	10.16	435	313	NONE
	5											
	6											
N to S	A	1480	1536	20.75	20.75	71	74	SW1	10.16	1790	-1038	
	B	2382	2472	6.92	6.92	344	357	SW3	10.16	566	3064	(2)CS16
	C	2346	2435	7.848051	8.91	299	273	SW2	10.16	265	2773	(2)CS16
	D	1444	1498	3.737323	6.16	386	243	SW3	10.16	183	3742	HTT5
	E											
	F											

FIRST FLOOR SHEARWALLS			story shears:				Vs $=$	10518	V w $=$	15691	east to west	holdown				
					V w $=$	17820	north to south									
grid		$\mathrm{V}_{\text {seismic }}$ (lbs)					$\mathrm{V}_{\text {wind }}$ (lbs)	$\sum l_{\text {wall }}(\mathrm{ft})$	$\sum l_{\text {wall }}(\mathrm{ft})$	v_{us} (plf)	$\mathrm{v}_{\mathrm{u}} \mathrm{w}$ (plf)		SW	h (ft)	DL(lbs)	uplift (lbs)
E to W	1	2576	3843	22.44571	24.16	115	159	SW1	11.16	76	1699	HTT5				
	2	4240	6324	14.16	14.16	299	447	SW3	11.16	535	4449	HDQ8				
	3	2683	4003	5.421147	5.5	495	728	SW4	11.16	208	7914	HDQ8				
	4	1020	1521	19.09	19.09	53	80	SW1	11.16	318	571	NONE				
	5															
	6															
N to S	A	2034	3446	23.5	23.5	87	147	SW1	11.16	596	1041	HTT5				
	B	3275	5548	20.08	20.08	163	276	SW2	11.16	1855	1228	HTT5				
	C	3225	5464	11.20346	11.91	288	459	SW4	11.16	319	7573	HDQ8				
	D	1985	3362	2.867384	4	692	841	SW4	11.16	299	9082	HDQ8				
	E															

Title 19-065		Page : 1
Dsgnr: CKS	Date:	
Description....		
Site Retaining Wall 2019		

This Wall in File:

This Wall in File:

Enercalc EARTH (c) 1987-2019, Build 11.19.06.12	Cantilevered Retaining Wall	Code: IBC 2018,ACI 318-14,TMS 402-16
License: KW-06011484		

Concrete Stem Rebar Area Details

3rd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment) :	0 in2/ft	
(4/3) * As :	$0 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.000 in 2
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : $0.000 \mathrm{in} 2 / \mathrm{ft}$
0.0018bh : 0.0018(12)(8)	0.1728 in2/ft	Horizontal Reinforcing Options
	$=======$	One layer of : Two layers of
Required Area	0.1728 in2/ft	\#4@ 0.00 in \#4@ 0.00 in
Provided Area :	$0.2 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 0.00 in \#5@ 0.00 in
Maximum Area	0.6773 in2/ft	\#6@ 0.00 in \#6@ 0.00 in

2nd Stem	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	$0.0004 \mathrm{in} 2 / \mathrm{ft}$		
(4/3)* As :	$0.0006 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.129 in2	
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft	
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :	
	============	One layer of :	Two layers of :
Required Area :	0.1728 in2/ft	\#4@ 12.50 in	\#4@ 25.00 in
Provided Area :	$0.2 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 19.38 in	\#5@ 38.75 in
Maximum Area :	0.6773 in2/ft	\#6@ 27.50 in	\#6@ 55.00 in

Title 19-065 Page : 3
Dsgnr: CKS
Date: 26 JUN 2019
Description....
Site Retaining Wall
This Wall in File:

License : KW-06011484 License To : CKS, KW-06011484	Cantilevered Retaining Wail	Code: IBC 2018,ACI 318-14,TMS 402

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

8" w/ \#4@12"

$$
8^{\prime \prime} \text { wi \#4@12" }
$$

This Wall in File:

This Wall in File:

License To : CKS, KW-06011484

Concrete Stem Rebar Area Details

3rd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment) :	$0.0005 \mathrm{in} 2 / \mathrm{ft}$	
(4/3) * As	$0.0007 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.129 in2
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :
	===========	One layer of : Two layers of :
Required Area	0.1728 in2/ft	\#4@ 12.50 in \#4@ 25.00 in
Provided Area :	$0.2 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 19.38 in \#5@ 38.75 in
Maximum Area :	0.6773 in2/ft	\#6@ 27.50 in \#6@ 55.00 in

2nd Stem	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0.0041 in2/ft		
(4/3)* As :	$0.0055 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.192 in2	
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft	
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :	
	============	One layer of :	Two layers of :
Required Area :	0.1728 in2/ft	\#4@ 12.50 in	\#4@ 25.00 in
Provided Area :	$0.2 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 19.38 in	\#5@ 38.75 in
Maximum Area :	0.6773 in2/ft	\#6@ 27.50 in	\#6@ 55.00 in

This Wall in File:

Enercalc EARTH (c) 1987-2019, Build 11.19.06.12	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
License: KW-060114847		

Summary of Overturning \& Resisting Forces \& Moments							
Item	 Force Distance Moment lbs ft $\mathrm{ft}-\#$			Soil Over HL (ab. water tbl)	Force lbs	RESISTING.... Distance ft	Moment ft-\#
HL Act Pres (ab water tbl)	630.0	2.00	1,260.0		939.6	$\begin{aligned} & 2.42 \\ & 2.42 \end{aligned}$	$\begin{aligned} & 2,272.2 \\ & 2,272.2 \end{aligned}$
HL Act Pres (be water tbl)				Soil Over HL (bel. water tbl)			
Hydrostatic Force				Watre Table			
Buoyant Force				Sloped Soil Over Heel =			
Surcharge over Heel	$=$			Surcharge Over Heel =			
Surcharge Over Toe	$=$			Adjacent Footing Load =			
Adjacent Footing Load				Axial Dead Load on Stem =			
Added Lateral Load	=			* Axial Live Load on Stem =			
Load @ Stem Above Soil	$\begin{array}{ll}= & \\ = & 201.6 \\ = & \end{array}$	3.00	604.8	Soil Over Toe =	62.5	0.50	31.3
Seismic Earth Load				Surcharge Over Toe			
				Stem Weight(s) =	500.0	1.33	666.7
	$=$	O.T.M. =	1,864.8	Earth @ Stem Transitions =	475.5	1.59	753.7
Total	831.6			Footing Weight =			
				Key Weight			
Resisting/Overturning Ratio		$=2.00$		Vert. Component =			
Vertical Loads used for	Soil Pressure	1,977.6 lbs			1,977.6	S R.M.=	3,723.8

If seismic is included, the OTM and sliding ratios
be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.
$8^{\prime \prime} w l \# 4 @ 12^{\prime \prime}$
$8^{\prime \prime} w / \# 4 @ 12^{\prime \prime}$
$8^{\prime \prime} w / \# 4 @ 12^{\prime \prime}$

This Wall in File:

This Wall in File:
Enercalc EARTH (c) 1987-2019, Build 11.19.06.12
License : KW-06011484
Cantilevered Retaining Wall

License To : CKS, KW-06011484

Concrete Stem Rebar Area Details

3rd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment) :	0.0046 in2/ft	
(4/3) * As :	$0.0061 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.321 in2
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : $0.192 \mathrm{in} 2 / \mathrm{ft}$
0.0018bh : 0.0018(12)(8) :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$	Horizontal Reinforcing Options :
	=	One layer of : Two layers of :
Required Area :	0.1728 in2/ft	\#4@12.50 in \#4@ 25.00 in
Provided Area :	$0.2 \mathrm{in} 2 / \mathrm{ft}$	\#5@19.38 in \#5@38.75 in
Maximum Area :	$0.6773 \mathrm{in} 2 / \mathrm{ft}$	\#6@ 27.50 in \#6@ 55.00 in

2nd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment) :	$0.0141 \mathrm{in} 2 / \mathrm{ft}$	
(4/3) * As :	$0.0188 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.192 in2
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : $0.192 \mathrm{in} 2 / \mathrm{ft}$
0.0018bh : 0.0018(12)(8) :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$	Horizontal Reinforcing Options :
	===========	One layer of : Two layers of :
Required Area :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$	\#4@12.50 in \#4@ 25.00 in
Provided Area :	$0.2 \mathrm{in} 2 / \mathrm{ft}$	\#5@19.38 in \#5@38.75in
Maximum Area :	$0.6773 \mathrm{in} 2 / \mathrm{ft}$	\#6@ 27.50 in \#6@ 55.00 in

Horizontal Reinforcing

Min Stem T\&S Reinf Area 0.639 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options:
One layer of : Two layers of :
\#4@12.50 in \#4@ 25.00 in
\#5@19.38 in \#5@38.75 in
\#6@ 27.50 in \#6@ 55.00 in

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined
Min footing T\&S reinf Area 0.95 in2
Min footing T\&S reinf Area per foot $\quad 0.26$ in2 ft
$\begin{array}{lr}\text { If one layer of horizontal bars: } & \text { If two layers of h } \\ \text { \#4@ } 9.26 \text { in } & \text { \#4@ } 18.52 \text { in } \\ \text { \#5@ } & \text { \#5@ } 28.70 \text { in }\end{array}$
\#5@14.35 in \#5@ 28.70 in
\#6@ 20.37 in \#6@ 40.74 in

This Wall in File:

Enercalc EARTH (c) 1987-2019, Build 11.19.06.12	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
License: KW-06011484		

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File:
Enercalc EARTH (c) 1987-2019, Build 11.19.06.12
License : KW-06011484
Cantilevered Retaining Wall

License To : CKS, KW-06011484

Yang Res.
This Wall in File:
Enercalc EARTH (c) 1987-2019, Build 11.19.06.12
License : KW-06011484

Title Yang:Residence Page: 1
Dsgnr: CKS
Date: 26 JUN 2019

This Wall in File:

Criteria		
Retained Height	=	7.00 ft
Wall height above soil	=	0.00 ft
Slope Behind Wall		0.00
Height of Soil over Toe		6.00 in
Water height over heel	=	0.0 ft

Cantilevered Retaining Wall

Soil Data		
Allow Soil Bearing $=$ $1,995.0 \mathrm{psf}$ Equivalent Fluid Pressure Method Active Heel Pressure $=$ $35.0 \mathrm{psf} / \mathrm{ft}$ $=$ $=$ $450.0 \mathrm{psf} / \mathrm{ft}$ Passive Pressure $=$ 125.00 pcf Soil Density, Heel $=$ 125.00 pcf Soil Density, Toe $=$ 0.525 Footing\|	Soil Friction $=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots. Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		(Service Level)
Wind on Exposed Stem (Service Level)	0.0 psf	

Code: IBC 2015,ACI 318-14,ACI 530-13

Earth Pressure Seismic Load
Method: Uniform $=8.000$
Multiplier Used
(Multiplier used on soil density)

| Uniform Seismic Force | $=64.000$ |
| :--- | ---: | ---: |
| Total Seismic Force | $=512.000$ |

Design Summary			Stem Construction		3rd	2nd	Bottom
			Design Height Above Ftg	$\mathrm{ft}=$	$\begin{array}{r} \text { Stem OK } \\ 5.33 \end{array}$	$\begin{gathered} \text { Stem OK } \\ 3.33 \end{gathered}$	$\begin{gathered} \text { Stem OK } \\ 0.00 \end{gathered}$
Wall Stability Ratios			Wall Material Above "Ht"	=	Concrete	Concrete	Concrete
Overturning		2.11 OK	Design Method	=	LRFD	LRFD	LRFD
Sliding	$=$	1.41 Ratio < 1.5 !	5! Thickness	=	8.00	8.00	8.00
			Rebar Size	=	\# 4	\# 4	\# 4
Total Bearing Load		3,428 lbs	Rebar Spacing	=	10.00	10.00	10.00
...resultant ecc.		9.40 in	Rebar Placed at	=	Edge	Edge	Edge
Soil Pressure @ Toe	=	1,602 psf OK	Design Data $\mathrm{fb} / \mathrm{FB}+\mathrm{fa} / \mathrm{Fa}$	=	0.020	0.139	0.739
Soil Pressure @ Heel	=	0 psf OK	Total Force @ Section	-	0.020	0.13	0.73
Allowable Soil Pressure Less		1,995 psf Allowable	Service Level	lbs =			
ACI Factored @ Toe ACI Factored @ Heel	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{array}{r} 2,243 \mathrm{psf} \\ 0 \mathrm{psf} \end{array}$	Strength Level Moment....Actual	lbs =	185.0	612.0	1,820.0
Footing Shear @ Toe	=	11.6 psi OK	Service Level	ft -\# $=$			
Footing Shear @ Heel	$=$	13.3 psi OK	Strength Level	ft-\# =	132.7	892.4	4,769.3
Allowable	$=$	75.0 psi	Moment.....Allowable	ft-\# =	6,367.7	6,367.7	6,444.1
Sliding Calcs			Shear.....Actual				
Lateral Sliding Force	-	1,478.4 lbs	Service Level	psi $=$			
less 100\% Passive Force	=	281.3 lbs	Strength Level	psi $=$	2.5	8.2	24.3
less 100\% Friction Force	$=$	1,799.9 lbs	Shear.....Allowable	psi $=$	67.1	67.1	75.0
Added Force Req'd	$=$	0.0 lbs OK	Anet (Masonry)	in2 $=$			
....for 1.5 Stability	$=$	136.4 lbs NG	Rebar Depth 'd'	$\mathrm{in}=$	6.25	6.25	6.25
			Masonry Data				
K, FS > 1.1			f'm	psi $=$			
			Fs	psi $=$			
Vertical component of active lateral soil pressure ISNOT considered in the calculation of soil bearing			Solid Grouting	=			
			Modular Ratio ' n '	=			
			Wall Weight	$\mathrm{psf}=$	100.0	100.0	100.0
Load Factors			Short Term Factor	=			
Building Code		2015, ACI	Equiv. Solid Thick.	$=$			
Dead Load		1.200	Masonry Block Type	$=$ Medium Weight			
Live Load		1.600	Masonry Design Method		ASD		
Earth, H		1.600	Concrete Data		- ASD		
Wind, W		1.000		psi $=$	2,000.0	2,000.0	2,500.0
Seismic, E		1.000	Fy	psi $=$	60,000.0	60,000.0	60,000.0

This Wall in File:

| Enercalc EARTH (c) 1987-2019, Build 11.19.06.12 \quad Cantilevered Retaining Wall |
| :--- | :--- |
| License: KW-06011484 |
| License To: CKS, KW-06011484 |

License To : CKS, KW-06011484

Concrete Stem Rebar Area Details

3rd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment)	$0.005 \mathrm{in} 2 / \mathrm{ft}$	
(4/3)* As :	0.0066 in2/ft	Min Stem T\&S Reinf Area 0.321 in2
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :
	$=$	One layer of: Two layers of :
Required Area :	0.1728 in2/ft	\#4@ 12.50 in \#4@ 25.00 in
Provided Area :	0.24 in2/ft	\#5@ 19.38 in \#5@ 38.75 in
Maximum Area	0.6773 in2/ft	\#6@ 27.50 in \#6@ 55.00 in

2nd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment) :	$0.0334 \mathrm{in} 2 / \mathrm{ft}$	
(4/3) * As :	$0.0446 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.384 in2
200bd/fy : 200(12)(6.25)/60000 :	$0.25 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area per ft of stem Height : $0.192 \mathrm{in} 2 / \mathrm{ft}$
0.0018bh : 0.0018(12)(8) :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$	Horizontal Reinforcing Options:
	===========	One layer of : Two layers of :
Required Area :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$	\#4@12.50 in \#4@25.00 in
Provided Area :	$0.24 \mathrm{in} 2 / \mathrm{ft}$	\#5@19.38 in \#5@38.75 in
Maximum Area :	$0.6773 \mathrm{in} 2 / \mathrm{ft}$	\#6@ 27.50 in \#6@ 55.00 in

Bottom Stem			Vertica
As (based on applied moment) :			0.1787
(4/3)* As :			0.2383
200bd/fy : 200(12)(6.25)/60000 :			0.25
0.0018bh : 0.0018(12)(8) :			0.172
Required Area			0.2383
Provided Area :			0.24
Maximum Area :			0.8467
Footing Data			
Toe Width	=	1.50 ft	
Heel Width	=	2.92	
Total Footing Width	=	4.42	
Footing Thickness	=	12.00 in	
Key Width	=	0.00 in	
Key Depth	=	0.00 in	
Key Distance from Toe	=	0.00 ft	
$\mathrm{f}^{\prime} \mathrm{c}=2,500 \mathrm{psi}$		60,000 p	
Footing Concrete Densit		150.00 p	
Min. As \%		0.0018	
Cover @ Top 2.00		$\mathrm{m}=3.00$	0 in

Horizontal Reinforcing

Min Stem T\&S Reinf Area 0.639 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options:
One layer of : Two layers of :
\#4@12.50 in \#4@ 25.00 in
\#5@19.38 in \#5@38.75 in
\#6@ 27.50 in \#6@ 55.00 in

Footing Design Results			
		Toe	

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined
Min footing T\&S reinf Area $\quad 1.15$ in2
Min footing T\&S reinf Area per foot $\quad 0.26$ in2 ft
$\begin{array}{lr}\text { If one layer of horizontal bars: } & \text { If two layers of ho } \\ \text { \#4@ } 9.26 \text { in } & \text { \#4@ } 18.52 \text { in }\end{array}$
\#5@14.35 in \#5@ 28.70 in
\#6@20.37 in \#6@ 40.74 in

This Wall in File:

Enercalc EARTH (c) 1987-2019, Build 11.19.06.12	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
License: KW-06011484		

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201
Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File:
Enercalc EARTH (c) 1987-2019, Build 11.19.06.12
License : KW-06011484
Cantilevered Retaining Wall
Code: IBC 2015,ACI 318-14,ACI 530-13
License To : CKS, KW-06011484

Title Yang:Residence Page: 1
Dsgnr: CKS Date: 26 JUN 2019
Description....
(NO SEISMIC)Site Retaining Wall
This Wall in File:

(NO SEISMIC)Site Retaining Wall

This Wall in File:

| Enercalc EARTH (c) 1987-2019, Build 11.19.06.12 | Cantilevered Retaining Wall |
| :--- | :--- | :--- |
| License : KW-06011484 | |
| License To : CKS, KW-06011484 | Code: IBC 2015,ACI 318-14,ACI 530-13 |

Concrete Stem Rebar Area Details

3rd Stem	Vertical Reinforcing	Horizontal Reinforcing
As (based on applied moment) :	0.0016 in2/ft	
(4/3)* As :	$0.0022 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.321 in2
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :
	===========	One layer of: Two layers of :
Required Area :	0.1728 in2/ft	\#4@ 12.50 in \#4@ 25.00 in
Provided Area :	$0.24 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 19.38 in \#5@38.75 in
Maximum Area :	0.6773 in2/ft	\#6@ 27.50 in \#6@ 55.00 in

2nd Stem	Vertical Reinforcing	Horizontal Reinforcing	
As (based on applied moment) :	0.0173 in2/ft		
(4/3)* As :	$0.023 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 0.384 in2	
200bd/fy : 200(12)(6.25)/60000	0.25 in2/ft	Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft	
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :	
	============	One layer of :	Two layers of
Required Area :	0.1728 in2/ft	\#4@ 12.50 in	\#4@ 25.00 in
Provided Area :	0.24 in2/ft	\#5@ 19.38 in	\#5@ 38.75 in
Maximum Area :	$0.6773 \mathrm{in} 2 / \mathrm{ft}$	\#6@ 27.50 in	\#6@ 55.00 in

This Wall in File:

Enercalc EARTH (c) 1987-2019, Build 11.19.06.12	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
License: KW-06011484		

Summary of Overturning \& Resisting Forces \& Moments							
ItemOVE Force lbs	ERTURNING Distance ft	Moment ft-\#		Force lbs	ISTING..... Distance ft	Moment ft-\#
HL Act Pres (ab water tbl)	1,120.0	2.67	2,986.7	Soil Over HL (ab. water tbl)	1,971.7	3.29	6,493.4
HL Act Pres (be water tbl)				Soil Over HL (bel. water tbl)		3.29	6,493.4
Hydrostatic Force				Watre Table			
Buoyant Force	$=$			Sloped Soil Over Heel =			
Surcharge over Heel	$=$			Surcharge Over Heel =			
Surcharge Over Toe	$=$			Adjacent Footing Load =			
Adjacent Footing Load	$=$			Axial Dead Load on Stem =			
Added Lateral Load				* Axial Live Load on Stem =			
Load @ Stem Above Soil				Soil Over Toe =	93.8	0.75	70.3
	=			Surcharge Over Toe			
				Stem Weight(s) =	700.0	1.83	1,283.3
				Earth @ Stem Transitions=			
Total	$=1,120.0$	O.T.M. =	2,986.7	Footing Weight =	663.0	2.21	1,465.2
Resisting/Overturning Ratio				Key Weight =			
		$=3.12$		Vert. Component =			
Vertical Loads used for Soil Pressure =		3,428.4 lbs		Total $=3,428.4$		R.M. $=$	9,312.2

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil
(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File:
Enercalc EARTH (c) 1987-2019, Build 11.19.06.12
License : KW-06011484
License To : CKS, KW-06011484

